2 research outputs found

    A Survey on Interpretable Cross-modal Reasoning

    Full text link
    In recent years, cross-modal reasoning (CMR), the process of understanding and reasoning across different modalities, has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics. As the deployment of AI systems becomes more ubiquitous, the demand for transparency and comprehensibility in these systems' decision-making processes has intensified. This survey delves into the realm of interpretable cross-modal reasoning (I-CMR), where the objective is not only to achieve high predictive performance but also to provide human-understandable explanations for the results. This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR. Furthermore, this survey reviews the existing CMR datasets with annotations for explanations. Finally, this survey summarizes the challenges for I-CMR and discusses potential future directions. In conclusion, this survey aims to catalyze the progress of this emerging research area by providing researchers with a panoramic and comprehensive perspective, illuminating the state of the art and discerning the opportunities

    Dual Adversarial Graph Neural Networks for Multi-label Cross-modal Retrieval

    No full text
    Cross-modal retrieval has become an active study field with the expanding scale of multimodal data. To date, most existing methods transform multimodal data into a common representation space where semantic similarities between items can be directly measured across different modalities. However, these methods typically suffer from following limitations: 1) They usually attempt to bridge the modality gap by designing losses in the common representation space which may not be sufficient to eliminate potential heterogeneity of different modalities in the common space. 2) They typically treat labels as independent individuals and ignore label relationships which are important for constructing semantic links between multimodal data. In this work, we propose a novel Dual Adversarial Graph Neural Networks (DAGNN) composed of the dual generative adversarial networks and the multi-hop graph neural networks, which learn modality-invariant and discriminative common representations for cross-modal retrieval. Firstly, we construct the dual generative adversarial networks to project multimodal data into a common representation space. Secondly, we leverage the multi-hop graph neural networks, in which a layer aggregation mechanism is proposed to exploit multi-hop propagation information, to capture the label correlation dependency and learn inter-dependent classifiers. Comprehensive experiments conducted on two cross-modal retrieval benchmark datasets, NUS-WIDE and MIRFlickr, indicate the superiority of DAGNN
    corecore